

Introduction to Mathematics and Modeling

lecture 2

Exponentials and logarithms

UNIVERSITY OF TWENTE.

academic year : 18-19 lecture : 2

build : November 19, 2018

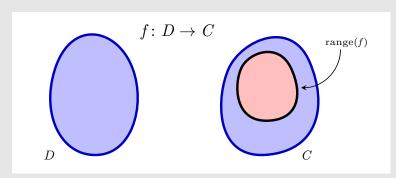
slides : 27

This week intro

Model 28 circular slide rule by Concise Ltd.

1 Section 1.5: exponential functions

2 Section 1.6: inverse functions and logarithms



- \blacksquare Exactly one arrow departs from every point in D.
- lacksquare Points in C that are not in the range of f are not hit by an arrow.
- \blacksquare Points in the range of f may be hit by more than two arrows.

Observation

If we reverse the direction of the arrows, then the result might not be a function.

UNIVERSITY OF TWENTE

Introduction to Mathematics and Modeling

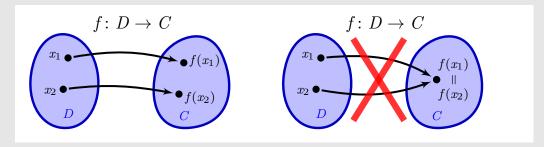
Lecture 2: Exponentials and logarithms

2/27

One-to-one functions

Definition

A function $f: D \to C$ is **one-to-one** if $f(x_1) \neq f(x_2)$ for every x_1 and $x_2 \in D$ with $x_1 \neq x_2$.



- This is equivalent with: for all x_1 and $x_2 \in D$ we have: if $f(x_1) = f(x_2)$ then $x_1 = x_2$.
- lacktriangle For a one-to-one function every point in C is the end point of $at\ most$ one arrow.

Example

The function f(x) = 2x - 1 is one-to-one.

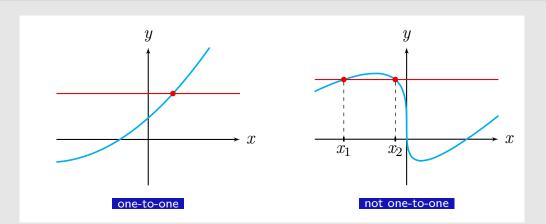
UNIVERSITY OF TWENTE.

Introduction to Mathematics and Modeling

Lecture 2: Exponentials and logarithms

4/27

Horizontal line test



The Horizontal line Test

If f is one-to-one, then a horizontal line intersects the graph of f in at most one point.

Example

The function $f(x) = 2x^2 - 1$ is not one-to-one.

- Notice that from $f(x_1) = f(x_2)$ follows: $x_1^2 = x_2^2$, which does *not* imply $x_1 = x_2$.
- Observe that

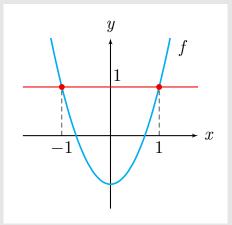
$$f(1) = 2 \cdot 1^2 - 1 = 1,$$

and

$$f(-1) = 2 \cdot (-1)^2 - 1 = 1,$$

hence f(1) = f(-1).

- The graph of *f* does *not* satisfy the horizontal line test.
- One counterexample suffices.



UNIVERSITY OF TWENTE.

Introduction to Mathematics and Modeling

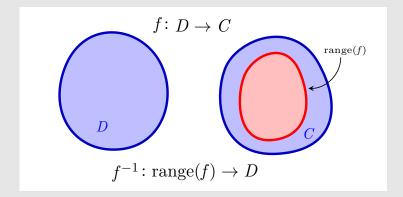
Lecture 2: Exponentials and logarithms

6/27

The inverse function

Theorem

If $f\colon D\to C$ is one-to-one, then reversing the arrows yields a function from the range of f to D.



■ This function is called the **inverse of** f, and is denoted as f^{-1} .

Finding the inverse function

- If y = f(x), then $x = f^{-1}(y)$.
- Finding the inverse means: solve the equation y = f(x) for x.

Example

Find the inverse of f(x) = 2x - 1.

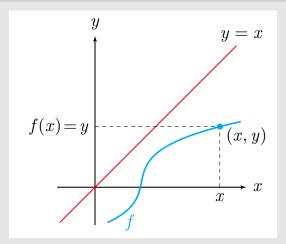
UNIVERSITY OF TWENTE.

Introduction to Mathematics and Modeling

Lecture 2: Exponentials and logarithm

9/27

The graph of the inverse function

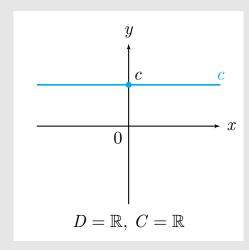


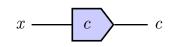
- Let y = f(x). Then (x, y) lies on the graph of f.
- lacksquare From y=f(x) follows $x=f^{-1}(y)$, so (y,x) lies on the graph of f^{-1} .
- lacktriangle The points (x,y) and (y,x) are reflected across the line y=x.
- The graph of f^{-1} and the graph of f are symmetric with respect to the line y=x.

Elementary functions

Definition

The constant function $c \colon \mathbb{R} \to \mathbb{R}$ assigns c to every $x \in \mathbb{R}$.





UNIVERSITY OF TWENTE.

Introduction to Mathematics and Modeling

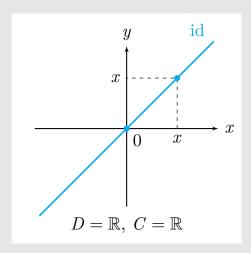
Lecture 2: Exponentials and logarithms

10/27

Elementary functions

Definition

The identical map $id : \mathbb{R} \to \mathbb{R}$ assigns x to every $x \in \mathbb{R}$.



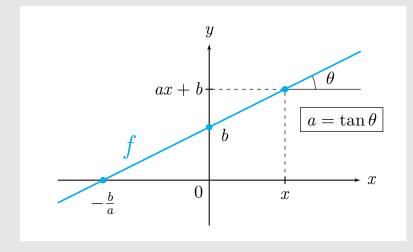


Linear functions

Definition

A linear function $f \colon \mathbb{R} \to \mathbb{R}$ is defined as

$$f(x) = ax + b, \qquad a \neq 0.$$



UNIVERSITY OF TWENTE.

Introduction to Mathematics and Modelin

Lecture 2: Exponentials and logarithms

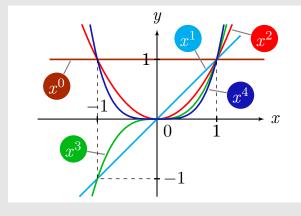
12/27

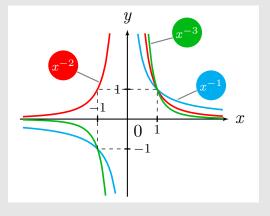
Power functions

Definition

For every integer n we define

$$x^n = \begin{cases} 1 & \text{if } n = 0, \\ \underbrace{x \cdot x \cdot \dots \cdot x}_{\substack{n \text{ times}}} & \text{if is } n \geq 1, \\ \frac{1}{x^{|n|}} & \text{if is } n < 0. \end{cases}$$





UNIVERSITY OF TWENTE

Introduction to Mathematics and Modeling

Lecture 2: Exponentials and logarithms

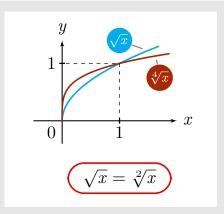
Roots

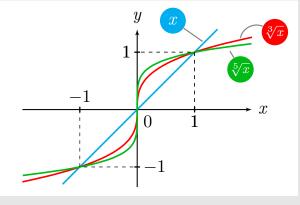
Definition

For every positive integer n we define the $\sqrt[n]{x} = x^{\frac{1}{n}}$ as the inverse of $f(x) = x^n$ where the domain of f is assumed to be

$$[0,\infty)$$
 if n is even,

$$\mathbb{R}$$
 if n is odd.





UNIVERSITY OF TWENTE

ntroduction to Mathematics and Modelin

Lecture 2: Exponentials and logarithm

14/27

Power functions

Definition

■ For arbitrary fractions $\frac{p}{q}$ (with p an integer and q a positive integer) we define

$$x^{\frac{p}{q}} = \left(x^{\frac{1}{q}}\right)^p.$$

■ If $\alpha \in \mathbb{R}$ is not a fraction, then x^{α} is defined by limits. This is beyond the scope of this course.

Basic properties

For arbitrary x, y, α and β we have

1
$$x^0 = 1$$

2
$$1^{\alpha} = 1$$

$$x^{\alpha}y^{\alpha} = (xy)^{\alpha}$$

$$4 x^{\alpha+\beta} = x^{\alpha}x^{\beta}$$

$$5 x^{\alpha-\beta} = \frac{x^{\alpha}}{x^{\beta}}$$

$$6 (x^{\alpha})^{\beta} = x^{\alpha\beta}$$

 $^{^1}$ Some combinations of $x,\ y,\ \alpha$ and β may not be defined.

Examples

$$\mathbf{3}^{1.1} \cdot 3^{0.7} = 3^{1.1+0.7} = 3^{1.8} = 3^{\frac{9}{5}} = \sqrt[5]{3^9}$$

$$\frac{\left(\sqrt{11}\right)^3}{\sqrt{11}} = \left(\sqrt{11}\right)^{3-1} = \left(\sqrt{11}\right)^2 = 11$$

UNIVERSITY OF TWENTE

ntroduction to Mathematics and Modelin

Lecture 2: Exponentials and logarithm

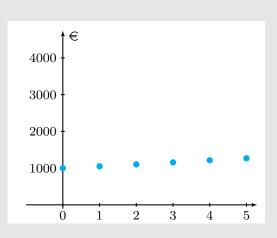
16/27

Exponential behaviour: interest on a savings account

If I have 1000 Euro in a savings account and the bank gives 5% interest each year, what will be my savings after 5 years?

Year	Savings	(€)
------	---------	-----

0 ()			
	0	1000	
	1	$1000\cdot(1.05)$	= 1050.00
	2	$1000 \cdot (1.05)^2$	= 1102.50
	3	$1000 \cdot (1.05)^3$	= 1157.63
	4	$1000 \cdot (1.05)^4$	= 1215.51
	5	$1000 \cdot (1.05)^5$	= 1267.28

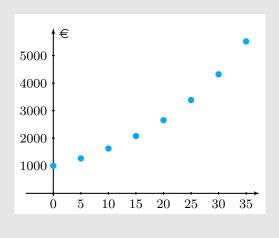


Exponential behaviour: interest on a savings account

If I have 1000 Euro in a savings account and the bank gives 5% interest each year, what will be my savings after 35 years?

Year	Savings (€)	
0	1000	
5	$1000 \cdot (1.05)^5$	= 1267.28
10	$1000 \cdot (1.05)^{10}$	= 1628.89
15	$1000 \cdot (1.05)^{15}$	=2078.93
20	$1000 \cdot (1.05)^{20}$	= 2653.3
25	$1000 \cdot (1.05)^{25}$	= 3386.35
30	$1000 \cdot (1.05)^{30}$	=4321.94

 $1000 \cdot (1.05)^{35} = 5516.02$



UNIVERSITY OF TWENTE

35

atroduction to Mathematics and Modelin

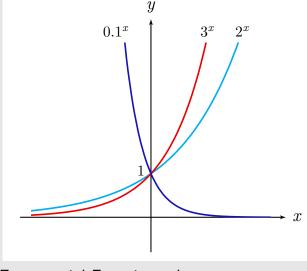
Lecture 2: Exponentials and logarithms

18/27

Exponential functions

Definition

Let a > 0. The **exponential function** with base a is $f(x) = a^x$.



$$u=2^{a}$$

$$y = 3^x$$

$$y = 10^{-x} = 0.1^x$$

Exponential Functions.nb

Exponential growth and decay

Definition

- If a quantity y depends on time and y is proportional to an exponential function, then we say that y grows exponentially.
- If the base is less than 1 we say that y decays exponentially.
- the human population (annual growth percentage $\approx 1.14\%$),
- carbon dating (the half-life of ¹⁴C is approximately 5730 years),
- compound interest,
- Moore's law: the number of transistors on integrated circuits doubles approximately every two years.

Exponential growth and decay

If y grows exponentially, then there are constants a and y_0 such that $y(x) = y_0 a^x$.

UNIVERSITY OF TWENTE

Introduction to Mathematics and Modeling

Lecture 2: Exponentials and logarithm

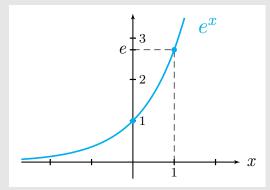
20 /27

The natural exponential function

- The derivative of an exponential function is proportional to the function itself.
- If $f(x) = a^x$ then $f'(x) = K a^x$ for some constant K.
- There is one specific base value for which K=1. This base is called e and is approximately

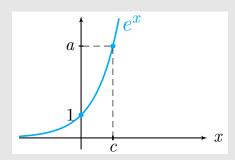
 $e \approx 2.71828182845904523536028747135266249775724709...$

■ The function e^x is called the **natural exponential function**.



Exponential Functions.nb

Exponential growth and decay



■ Let a > 0, then there is a constant $c \in \mathbb{R}$ such that

$$a = e^c$$
.

 \blacksquare For every x the following holds:

$$a^x = (e^c)^x = e^{cx}$$

Exponential growth and decay

If y grows exponentially, then there are constants c and y_0 such that $y(x) = y_0 e^{cx}.$

- \blacksquare If c>0, then a>1 hence y is exponentially growing, and c is called the **growth rate**.
- lacksquare If c < 0, then a < 1 hence y is exponentially decaying, and c is called the **decay rate**.
- The constant y_0 is equal to y(0), and is called the **initial value**.

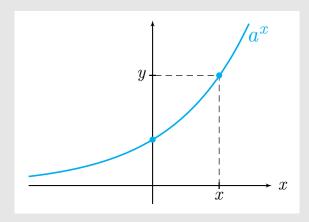
UNIVERSITY OF TWENTE. Introduction to Mathematics and Modeling Lecture 2: Exponentials and logarithms

Logarithms

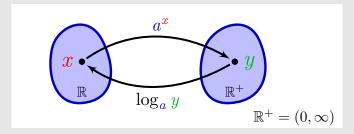
Definition

The **logarithm with base** a is the inverse of the exponential function with base a:

$$y = a^x \iff x = \log_a y$$



Logarithms are exponents



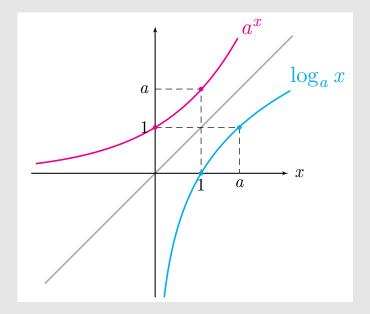
UNIVERSITY OF TWENTE.

Introduction to Mathematics and Modeling

Lecture 2: Exponentials and logarithms

24/27

The graph of the logarithm



 \blacksquare The graph of $y=\log_a x$ is obtained by reflecting the graph of $y=a^x$ across the diagonal line y=x

Logarithmic laws

UNIVERSITY OF TWENTE

ntroduction to Mathematics and Modelin

Lecture 2: Exponentials and logarithm

26/27

Logarithms with special base

- We write the logarithm with base 10 as $\log x$
- We write the logarithm with base e as $\ln x$
- lacktriangle The logarithm with base e is called the **natural logarithm**.

